
HackArmour: A Search Engine For Hackers
Ujjwal K. Kumar1 • Rishiraj S. Behki2

hackarmour.com

1 Guwahati, Assam, India. ujjwal-kr@hackarmour.com (First author)
2 Vadodara, Gujarat, India. rishiraj@hackarmour.com (Corresponding author)

ABSTRACT

The HackArmour search engine is a comprehensive tool that has been specifically crafted to cater
to the needs of security researchers and infosec enthusiasts. Utilizing a microservices architecture,
the HackArmour search engine has been implemented using the popular programming languages
NodeJs[1] and Golang[2]. As a result, it offers an array of features and functionalities that make it
a valuable resource for the security community. One of the key features of the HackArmour
search engine is its ability to search for Common Vulnerabilities and Exposures (CVEs)[3] and
Reddit threads, providing users with access to a wealth of information that can be used to improve
their understanding of current security threats. Additionally, the HackArmour search engine also
offers a range of security feeds, providing users with up-to-date information on the latest
vulnerabilities and exploits. Furthermore, the HackArmour search engine also boasts a curated
collection of resources and exploits, which can be used by security researchers to develop new
methods for protecting against cyber threats. In this paper, we will be delving into the design and
implementation of the HackArmour search engine, evaluating its performance, and discussing its
significance in the field of security research.

Keywords — Search Engine, Information Security, Microservices

I. INTRODUCTION

Security research is a crucial and rapidly advancing field, with new vulnerabilities and exploits
constantly emerging. To keep abreast of the latest developments, security researchers and infosec
enthusiasts require access to a broad spectrum of resources and tools that can aid them in
discovering and analyzing information. However, the vast expanse of information available on the
internet can make it challenging to locate the most pertinent and reliable results. The sheer
volume of data can be overwhelming, and it can be difficult for researchers to separate the signal
from the noise, to identify the most relevant and accurate information that can be used to improve
their understanding of current security threats.

https://hackarmour.com/
mailto:epicujjwal@gmail.com
mailto:epicujjwal@gmail.com

To address this issue, we developed the HackArmour search engine, which is a comprehensive
resource for security researchers. The HackArmour search engine is a web-based application that
enables users to search for CVEs and Reddit threads, as well as get security feeds and access a
curated collection of resources and exploits, all in one spot. With a microservices architecture and
a focus on logging and monitoring, the HackArmour search engine is meant to be extremely
dependable and fault resistant.
Furthermore, the HackArmour search engine allows members of the community to submit their
own resources and exploits, ensuring that the information offered is constantly current and
relevant.

II. IMPLEMENTATION

The HackArmour search engine was built with a combination of Typescript and Golang. We
picked Typescript (nodejs) for its IO capabilities, and it is already well-suited for constructing the
search engine's user interface and front-end (react). Golang was selected for its concurrency
support and capacity to handle enormous volumes of data, making it ideal for constructing the
search engine's multithreaded broker and indexer services. The search engine was built with a
microservices architecture for increased scalability and flexibility. Each microservice is in charge
of a different part of the search engine, such as indexing and searching YouTube videos or
looking for vulnerabilities and exploits.

A custom build system using make[4] was also developed for the search engine to streamline the
development overflow and save time. It sets the dev environment using hot reloading features
with docker volumes, installs dependencies, and configures, seeds and migrates the database. It is
also used in production for deployment.

Full Sized Image Here

https://camo.githubusercontent.com/4646054d7556d35f7351f1a4633a84c34177c33451f4c75f8894787383077182/68747470733a2f2f6d656469612e646973636f72646170702e6e65742f6174746163686d656e74732f3933363130363032323537363230313736392f313035383833323136323833383830363637382f6861636b61726d6f75722e706e67

Both the Search Client and the URL Scheduler Client are developed in Typescript and
Reactjs. All requests from the scheduler client are sent through the main server's Authentication
module, which employs bcrypt and JSON Web Tokens (JWT). It determines whether or not the
user is a member of the staff. The background processor is developed in golang and
communicates with the parser container (written in nodejs and express) and the database
(MYSQL). The diagram also shows the exploit search and YouTube feed container, which is built
with nodejs and express.

III. WORKFLOW

The numbers in the diagram are to show the rough timings of the events that can occur in the
search engine. The events can be described as follows:

i. Staff shares URLs that could be indexed in the search engine.
ii. The URLs are stored in a temporary table in the database called brokerTempURLs.

iii. This event starts the broker, and it fetches all the URLs from the mentioned table and
fetches its title through the Parser container, and stores them in a new table called
tempURLs, deleting the previous table.

iv. Later on when the higher staff checks on the lists of tempURLs, they can approve a URL
to be valid to be later indexed, along with attaching the category and optionally editing the
existing information. This new data is stored in the PermaURLs table, and the tempURLs
table gets deleted.

v. When there are a significant number of URLs in the PermaURLs table, the broker is
called again to index the PermaURLs.

vi. The Broker then takes the PermaURLs with the additional information attached to it and
using the Parser again, it extracts more information about the web page.

vii. This information is then stored into the Searchable table, waiting for the database to index
it later on, and deleting the PermaURLs table.

viii. Now, the Searchable module in the main server can serve the indexed queries through the
Client module.

ix. The Client module is also a router for all the client requests, as it fetches Exploits, CVEs
and Youtube feeds from the other containers.

It should be noted that the workflow is quite fault tolerant, thus tables are not completely
deleted when they are passed to the next stage. It uses error handling mechanisms to
determine whether the operation was successful (moving it to the next stage). If an
unforeseen error happens, the system will recover without damaging any data.

Furthermore, this is the current workflow as of the authoring of this article, and it is
susceptible to change due to additional scaling requirements or changes in our
specification. The Parser and Broker will be explained in full later in this article.

IV. CONCURRENCY AND FAULT TOLERANCE

As previously stated, Golang was selected for its concurrency features. It is a background process
that is launched by the main server in the main server container itself. In order to improve
efficiency, it sends requests to the parser at the same time. When compared to single threaded
processes, the reported performance boost is about double. It is spawned when there is a post
request for URLs, as well as when there are sufficient permanent URLs. There are several
scenarios in which this may fail, thus various safeguards are in place to ensure its dependability:

- If multiple users post URLs at the same time, it can lead to multiple running instances of
the broker which will lead to data corruption.

- This is solved by storing the broker state to the database, if the broker is busy the
URLs will just be stored and the broker won’t be called.

- If the server stops unexpectedly, the data currently being processed may be lost.
- The data from the previous stages is only erased when it has been verified that it has

securely progressed to the next level. Because of batching, it won't have to restart a
huge transaction if it fails somewhere along the road.

- If there are a lot of (say a million) URLs gathered already in the temporary broker table, it
may lead to a memory overflow, which will crash the broker.

- This will never happen as the broker does its operation in batches, so a large amount
of data will never be copied in memory.

V. RANKING SYSTEM

There is no click-based or backlink-based ranking system like Google.
We also do not have a large enough data set to accomplish automatic ranking utilizing machine
learning. The present ranking mechanism is manual; a weight is applied when our higher staff
categorizes URLs, and when the user searches the results, the query prioritizes the URLs with the
most earned weight. This method will be repeated until we have a sufficient collection of
resources. Following that, we may combine the visit counts with the weight to alter the ranking of
a specific page or resource.

score = (visits/totalVisits) * weight

The weight is a number between 0 to 100, and it always remains constant. It is also to be noted
that this will only contribute to a minor part of the ranking algorithm, as visits can be increased
with spam. Other parts of the ranking algorithm will be decided by ratings, and timely staff
reviews.

VI. FEEDS CVEs AND EXPLOITS

Hackarmour also enables users to search through exploits and CVEs. Aside from that, it provides
YouTube feeds to provide the most recent information security topics. These capabilities are
introduced to the engine to make it easier for users to access these resources.

The Exploit & Feed container, developed in Python, is in charge of maintaining and broadcasting
feeds as well as searching for vulnerabilities. It executes the container's searchsploit[5] command
and delivers results depending on the output.

The Youtube feed is a feed maintained by our community. It is inspired by securityTube[6] which
is no longer updated these days. This module in hackarmour tries to revive the likes of it. We are
also planning to implement some other feeds such as the google project zero[7] and other popular
security blogs in hackarmour itself.

One of the most essential feeds for security researchers is CVE. Even more significant than
exploits or the most recent blogs. They are a compilation of the most recent publicly known
vulnerabilities and exposures. We provide this as a feed as well as a searchable database.Because
it is developed in Typescript and Node Js, this module lives in the Parser-Search container.
The Parser-Search container now includes Reddit Search, which allows the user to search for
relevant information in the most popular Reddit discussions.

VII. SIGNIFICANCE OF THE SEARCH ENGINE

Our mission has always been to conserve and spread knowledge. And it's hackarmour's
responsibility to do the same. A security researcher or a hacker can benefit from hackarmour in a
variety of ways.

- They won't have to open many tabs or windows to hunt up CVEs, exploits, or publications
if they can find them on hackarmour.

- They won't have to visit many websites, such as popular blogs or the CVE website, to stay
up with various feeds and happenings in the security sector.

- In hackarmour, beginners may discover a clear roadmap as well as listings of open-source
resources and labs.

- Hackarmour also provides a feed that keeps you up to speed on forthcoming CTFs and
other conferences or events (We are also working on a CTF event platform).

CONCLUSION

The hackarmour community also hosts its own CTFs, and we have a very good team of hackers
and engineers. This project is also a good opportunity for beginner developers or hackers to make
infosec challenges, or work in a real world environment in case they want to help the community
by improving the engine or making our specification better.

Making this search engine was a lot of fun, and I would like to thank all of the community
members and contributors for their assistance in getting this project completed. It was one of the
most enjoyable projects I've ever worked on.

I would like to thank Rishiraj in particular for managing the community, implementing some of
the essential elements of hackarmour, and co-authoring this work. Furthermore, because the
search engine is new, the ranking algorithm is not yet completely established and will experience
significant modifications in its specification as and when additional data is supplied.

REFERENCES

[1] NodeJs: A javascript runtime environment https://nodejs.org
[2] Golang: The go programming language by google https://go.dev
[3] CVE: List of publicly known vulnerabilities https://cve.mitre.org/
[4] Make: A tool which controls the generation of executables and other non-source files of a
program from the program's source files. https://www.gnu.org/software/make/
[5] Searchsploit: tool to search exploit-db https://www.exploit-db.com/searchsploit
[6] SecurityTube: Youtube but for infosec http://www.securitytube.net
[7] Google project zero: https://googleprojectzero.blogspot.com

https://nodejs.org
https://go.dev
https://cve.mitre.org/
https://www.gnu.org/software/make/
https://www.exploit-db.com/searchsploit
http://www.securitytube.net/
https://googleprojectzero.blogspot.com

